FERNANDO FERNANDES CHAVES
MARCOS TAKESHI KOBAYASHI

Reestruturagéo da Estrutura de Dados e Implementacéo
de Algoritmos no Modelador de Sélidos Didatico
USPDesigner

Dissertacdo apresentada a
Escola Politécnica da
Universidade de S&o Paulo
para obtencéo do titulo de
Engenheiro

QOrientador:
Prof. Doutor
Marcos Sales Guerra Tsuzuki

Sdo Paulo
2003

18

Agradecimentos

Agradecemos ao Prof. Doutor Marcos de Sales Guerra Tsuzuki pelo apoio e
orientacdo.
Agrademos a Marcelo Shimada e Wang pela ajuda.

Agradecemos a nossos pais, familiares e amigos pela ajuda e apoio sem os quais no
conseguiriamos concluir este trabalho.

I

Resumo

Neste trabalho serd realizada uma remontagem da estrutura de dados do modelador
de sélidos didatico B-Rep USPDesigner, a fim de tornar sua implementacdo e
expansdo mais faceis, melhorando o rendimento do modelador, com uma economia
de meméria e tempo nos processos de criagio, modificacio e exclusdo de modelos.
Para isso serd utilizado o conceito de encapsulamento, para que certas partes
instaveis dos objetos sejam “escondidas” ao mesmo tempo em que seus
acionamentos fiquem implicitos em chamadas simples e seguras. Serd também feito
uso dos conceitos da linguagem de programacdo C++ e padrdes de projeto.
Primejramente serd feito um estudo da estrutura de dados atual do USPDesigner e
aprofundaremos os conceitos da linguagem de programagiio C++. Apés este estudo
serfo iniciadas as modificacdes na estrutura de dados. Seguindo ent3o uma seqiiéncia
de alteragGes, sendo ela: operadores de Euler, operadores de alto nivel, operadores
complexos e rotinas de visualizagdo, estas sendo pertencentes 4 biblioteca OpenGL.

v

Abstract

In this work, a re-assembly of the data structure of the didactic solids modeler
USPDesigner will make its development and expansion easier, allowing better
performance to the modeler, with memory and time economy in the processes of
creation, editing and deletion of models. For that the concept of encapsulation will be
used, so that some unstable parts of the objects are “hidden” but still used through
simple and safe calls. Concepts of C++ programming language and project patterns
will also be used. At first, an analysis on the actual data structure of USPDesigner
and a deeper study at the C++ programming language concepts will be made. Then
the data structure modifications will be made followed by a sequence of alterations,
in order: Euler operators, high level operators, complex operators, and visualization
routines, those belonging to the OpenGl library.

SUMARIO

AGRADECIMENT OSo e e e et eaee e I
RE S MO . o e e i e e e e e e II
AB S T R A CT .. e e s 11
SUMARIO.vveevveereresnsaresssssssssesssssssssssssssassssasassassesansassssossasesssssssensessansssesssssassmssssesaeesssessemssemmns 1
LISTA DE FIGURASooumrvvnriacrsesesiesstes s sessssase s sssssssesssasesssssssssans sbesssnsosesnessassemsesmossenssesossane 3
L INTRODUGAQccvvrmevasinsssssissmsssssissmsrsssersssnsssssossssssssmssssssssssass s sssssesssmssssssssssaessssssssassssesssons 4
L INTRODUGAD ..o esereensisesessssssssssssassssesssssssssssssssssns ssaesesssssssmsssasseseasessmsessesemmessemsessnsens 4
2. USPDESIGNER.......covvurereersrersrsrnrssesssmsssarssssrssssssssssssssrstesssssssasessasssssssssssssssesssssmessansssssssssasss 5
3. ESTRUTURA DE DADOScoovteerirertiesisesssesisesssssiessssassssosssnnsaessesessoesesesseesessssessessassaseessesseesses 9
4. ENCAPSULAMENTOQ DA ESTRUTURA DE DADOSooommiovoreereeoeseenseeossemseseaseseeessseaseerns 14
5. OPERADORES DE EULERovvnrvenssrenressesssssssssssssssssssssssssssssssossssssssssssssssssesssssssssessseeon 18
6. MODIFICAGCOES NOS OPERADORES DE EULERooucoonomueneeeeesseeeseesenesseseseeesssnsssessees 22
7. OPERADORES DE ALTO NIVEL......cocoeveiueiueieeisessssssssossosisssnessssmeresssssesessesassessesssassesssnseees 23
8. OPERAGOES BOOLEANASovvvvemireeerssrensssssssssssssssssssssssssmsssstosssasssssssssesasssssossesssssssssnes 25
9. MODIFICAGOES NAS OPERACOES BOOLEANAScoovvvmcveeeesesiessmenscasessssesssssssssossseasnens 28

11, VISUALIZACAD ..o eeseeseaseeseesensaranessassassassaseesesemssassasas s saseassasessssesesassassassantons 31
12, CONCLUSOES ... eeveeeeeeeeereessesseeseerasessessessssssseasasssssssesassesssessassssenssesssessassassssesesssssanssssssssosssess 33
APENDICE A - ALGORITMO DE OPERACAQ BOOLEANAooveoeeeeereeereseeemeeesesaeescenessass 34

APENDICE B = OPENGL......ocrvevveoseeseeseerssseseesassosessassosessassassessssssssssssessassassesssssssssssssssassssssssssssns 53

APENDICE C - ALGORITMO DA VISUALIZACAO

BIBLIOGRAFIAcoorreereerreerceceeenesressrsserrseernensens

...

...

LISTA DE FIGURAS
F1G.1 RELAGOES DE ADJACENCIA ENTRE VERTICE (V), ARESTA (E) EFACE (F). vvvvevvereseeeereereeeresnans .5
FIG. 2 REPRESENTAGAO DE UMA “HALFEDGE”.evivesisesnsssnsssissssssssssssencrernsssssessenss BT T e T e ()
FiG. 3 SOLIDO A, FORMADO POR 2 REGIOES E SOLIDO B FORMADO POR UMa UNICA REGIAO, .)
FiG. 4 A REGIAO 1 E FORMADO POR 3 “SHELLS”: O EXTERNO (“SHELL” 3) E DOIS INTERNOS: “SHELL” 1
EZ2ueieereeaensesnesensensnnes B e e T Ty Prrrter
FI1G.5 . FACE FORMADA POR 3 LAGCOS: LAGO EXTERNO 3 E LAGOS INTERNOS | E2......
FIG. 6 HIERARQUIA DOS ELEMENTOS DA ESTRUTURA DE DADOS. 1vvevveveeereerreseesaesnessssssnsaens
FIG. 7 REPRESENTAGAO DA IMPLEMENTAGAD. vuveereesersssrsesoressiseeneansnsarsssessesmssenssssssessessesssses Cvrreenns
F1G. 8 COMUNICAGAO ENTRE 0§ ELEMENTOS NA ESTRUTURA ANTIG A.v...oveevnerns ererenaen
FIG. 9 COMUNICAGAO ENTRE O8 ELEMENTOS NA ESTRUTURA ATUAL. e s s Lea T o 15
Fi. 10 REPRESENTAGAO DE UM VERTICE V COM UMA MEIA-ARESTA HE (SEM EXISTENCIA DE ARESTA),
... e Y P ¢
Fig. 11 (a) MEV CRIANDO UMA MEIA-ARESTA; (B) MEV CRIANDO DUAS MEIA-ARESTAS.ovouens 19
Fig. 12 EXEMPLO DE UTILIZAGAO DO OPERADOR MEF, FACE F2 FOI CRIADA.cccvvveravrvrersesssrsesseses 19
FiG. 13 EXEMPLO DE UTILIZACAO DO KEMR. ..) .20
Fi6. 14 EXEMPLO DE UTILIZAGAQ DE KFMRH SR N 20
FIG. 15 (A) AUNIAO DOS DOIS “SHELLS™ GERA UM FURC NAO PASSANTE (B8) UtiLizagAo DE KSFMR,
.. < SENNS N)
F1G.16 Cr1A ARCO DE CIRCUNFERE“NCIA. B U . ——
F1G.17 EXTRUSAC DE UMA FACE DE UMCUBO...eoiviisevesvesssesnnes JUPRU N e N i S
FIG. 18 OPERAGAC DE SUBTRACAQ DE DOIS CUBOS..creveereereranas S, NN Ee—— W
FIG. 19 TELA COM AS QUATRO VISTAS POSSIVEIS E TELA DE INFORMACGES. .
F1G.20 UMA DAS VISTAS INDIVIDUALMENTE. ..ecvvvvereenns o I TR a———_
F16.21 PROPRIEDADES DO SOLIDO. .. B N T 32
F1G. 22. PRINCIPALS FUNCOES DO ALGORITMO DE OPERACAO BOOLEANA. ..., e N— 34
FI1G 23. ILUSTRACAO DE MUDANGA DE SENTIDO DAS MEIA-ARESTAS. vevvveveeeneeeesseessesesnns i e 36

FiG. 24. APESAR DAS FACES F1 E F2 POSSUIREM NORMAIS DIFERENTES, ELAS ESTAO MUITO AFASTADAS
UMA DA OUTRA, O QUE IMPEDE A EXISTENCIA DE UM PONTO DE INTERSECCAO. vuvvveveverrervesrenenns 37
FIG. 25. EXEMPLO DE VERIFICACAC DE ARESTAS QUE CONTORNAM FACES QUE DEVEM SER REMOVIDAS.

FiG. 27, CRIAGAO DE UMNOVO VERTICE NA ARBSTA. cvevieesvencersersreseseeresssnssnes
Fi1G. 28, ROTINA PARA QUANDO AMBOS OS PONTOS ESTIVEREM NO INTERIOR DA FACE. . S)
FIG. 29. CRIANDO UM NOVO VERTICE E UMA NOVA ARESTA QUE UNE ESTE NOVO VERTICE COM UM

VERTICE JA EXISTENTE. cvvuetesnereressrersensssssenesseseasans A ——— | —————————————
F1G. 30, CASO COMO LLACOS DIFERENTES.coveueeee eesrarteseeaaberereereanas

FIG. 31. NOVA FACE CRIADA, COM MESMA ORIENTAGAOQ QUE AANTIGA o i virieiieiecieeceerearrsvs s ernersersennen
FIG. 32. CORRECAC PARA LACOS INTERNOS NO INTERIOR DE LACOS INTERNOS
F1G. 33 A) SOLIDO S1 ES2 B) DIEDROS DOS SOLIDOS ST ES2; covvviivereieeecninins P esm— —
FIG. 34. A) cLASSIFICA F22 BASEADO NO DIEDRO F11/F12; B) CLASSIFICA F21 BASEADO NO DIEDRO
F11/F12; ¢) cLASSIFICA F11 BASEADO NO DIEDRO F21/F22; D) CLASSIFICA F12 BASEADO NO
DIEDRO F21/F22. ... R, S ——————, %, S— S— 47
FiG, 35, A) F21 EF11 SAO FACES COPLANARES COM NORMAIS OFOSTAS — AMBAS DEVEM SER
REMOVIDAS; B) F21 EF11 A0 FACES COPLANARES COM NORMAIS DE MESMO SENTIDO — UMA
DELAS DEVE SER REMOVIDA. . P L ST L e o T e T e e 48
F1G. 36. CLASSIFICACAO DA FACE F22 USANDO ODIEDRO F11/F12.cviriiiainnn. ... 48
FIG. 37. SITUAGOES POSSIVEIS DE CLASSIFICACAO DE FACE BASEADC NG DIEDRO DO SOLIDO OPOSTO, 49
FIG. 38, A) NORMAIS IGUAIS B) E C) NORMAIS CPOSTAS DAS FACES FN1 EFNZ, .ovvvevverereirsesesenen 31

1. INTRODUCAO

Nos dias de hoje, temos que os modeladores de sélidos possuem uma grande
importéncia para o desenvolvimento e estudo de novos produtos. Estes devem ter as
informacBes e desenhos armazenados, conseguindo-se analisar suas atuacdes e
fungdes através de simulagdes feitas por computador. Estes modelos além de
servirem para simula¢Bes podem ser utilizados em computacdo grafica para estudo
de processos de fabricagéo e até para entretenimento, se utilizados para construcéo de
jogos.

Tendo em vista estas aplicagdes fica evidente a necessidade de uma grande
fidelidade na modelagem de elementos reais.

Iremos realizar nossos estudos através do modelador de sdlidos USPDesigner,
criado para fins académicos. Apresentaremos:
¢ Estrutura de dados do modelador
e Operadores de Euler
e Operadores de alto nivel
e Operacdes booleanas

* Visualizacdo

2. USPDESIGNER

Modelador de sélidos do tipo B-Rep, implementado em Visual C++ 6.0, que
utiliza 0 OpenGL para visualizagfio wireframe ou shading.
A arquitetura de um software modelador de s6lidos possui trés niveis de abstragdo:

Nivel Superior: neste nivel, estdo presentes as rotinas que definem as ferramentas

disponiveis a0 usuério, permitindo construir, modificar e armazenar os sélidos. Os
operadores locais e opera¢Ses booleanas compéem este nivel.

Nivel Intermedidrio: onde sdo desenvolvidas ferramentas para implementar as
ferramentas do nivel superior. Este nivel € principalmente composto pelos

operadores de Euler.
Nivel Inferior: onde é desenvolvida a estrutura de dados que forma uma
representagdo apropriada para a manipulacio computacional.

A representacio B-rep armazena detalhes de como as faces, arestas e vértices
se unem para representar um sélido. Um sélido modelado pela representagdo B-rep
deve descrever como cada face estd conectada as suas faces adjacentes, de maneira
que um volume totalmente fechado seja definido. Em uma representagio B-rep, esta
informacéo estd disponivel explicitamente, ou seja, nfio é necessario realizar

nenhuma comparagio numérica.

Yy
Yy

FIG.1 RELAGOES DE ADJACENCIA ENTRE VERTICE (V), ARESTA (E) E FACE (F).

6
Esta informac@io de adjacéncia é, geralmente, referenciada informalmente

como topologia do sélido modelado. As informagdes topologicas criam um conjunto
de vigas, no qual as informacfes geométricas sdo apoiadas. As informagGes
topologicas e as informacles geométricas nfo podem ser tratadas
independentemente, pois elas estdo profundamente relacionadas. Entretanto, a
topologia é conseqiiéncia da geometria e nfo vice-versa. A geometria representa, por
exemplo, equacdes de faces e coordenadas de vértices.

No USPDesigner a estrutura de dados se baseia na aresta como elemento de
referéncia. Para este tipo de estrutura se destacam a “winged-edge” e a meia-aresta
(esta utilizada no USPDesigner).

Na estrutura “winged-edge”, as arestas assumem duas funges principais:
dividir o contorno direcional das faces e definir a conectividade entre os elementos
primitivos por meio de informacSes de adjacéncia da aresta de referéncia. Porém, do
ponto de vista computacional, este € o ponto mais negativo da estrutura “winged-
edge”. Esta deficiéncia é clara, em particular, quando o circuito direcional de arestas
de uma face deve ser obtido pelo procedimento que percorre seqiiencialmente todas
as arestas que o compdem. A necessidade deste algoritmo surge com muita
freqiiéncia em operagdes graficas e geométricas aplicadas ao sélido representado.

Para resolver esta deficiéncia, a estrutura meia-aresta foi proposta; onde as
duas principais funcOes da aresta foram separadas. Esta separacdo foi obtida pela
divisdo de cada “winged-edge” em duas metades. A conectividade entre ambas as
metades € mantida por um ponteiro que referencia a metade oposta.

Na estrutura meia-aresta, cada metade da aresta participa em apenas um
circuito de arestas, portanto, cada metade possui apenas uma unica orientagfo.
Globalmente, cada aresta de referéncia é referenciada duas vezes em diregdes
opostas pelos circuitos de arestas que contornam as duas faces adjacentes. A Figura 2

ilustra a representacéo meia-aresta. Edge

Halfedg Halfedg

FIG. 2 REPRESENTAGCAO DE UMA “HALFEDGE”.

A estrutura do sélido completa utilizada na implementaciio do USPDesigner
compreende os seguintes elementos:
Sélido (“Solid™): Representa o sélido que estd sendo modelado; o sélido possui uma
ou mais regides;

Regido (“Region™): é possivel que existam sélidos formados por conjuntos fechados

de faces separados um do outro. Como exemplo, podemos imaginar a operagdo
Booleana Unido aplicada sobre duas caixas que estfio separadas (Figura 2.3) — o

sdlido resultante possui duas regites. O elemento Regido possui um ou mais “shells”;

.....

FIG. 3 SOLIDO A, FORMADO POR 2 REGIOES E SOLIDO B, FORMADO POR UMA UNICA
REGIAO.

“Shell”: este elemento é um conjunto fechado de faces. Uma regidio é formada por
um “shell” externo, e pode ter zero ou mais “shells” internos. Como exemplo (Figura
2.4), pode-se imaginar a Operacdo Booleana Subtragdo sendo realizada para subtrair
uma caixa pequena de uma caixa grande, sem que nenhuma face da caixa menor
intercepte alguma face da caixa maior. E possivel aplicar vérias subtragSes e obter
um sélido com vazios internos (“shells” internos). Naturalmente, como as normais
das faces apontam para onde ndo existe material, as normais das faces dos “shells”
internos devem apontar para seu interior (vazio), e as normais das faces do “shell”

externo apontam para o exterior. O elemento “Shell” ¢ formado por faces;

Shell 1) —— Shell 2

Shell3 ——

Region 1

8
FIG. 4 A REGIAO | £ FORMADO POR 3 “SHELLS”: O EXTERNO (“SHELL” 3) E DOIS
INTERNOS: “SHELL” 1 E 2.

Face: elemento que delimita o material do sélido. Pode-se obter a normal da face
através do célculo da equacfo do plano no qual se encontra a face. A face é formada
por lacos;

Loop (laco): ¢ possivel que uma face possua furos. Estes furos sdo modelados como
lacos internos. Logo, a face é formada por um lago externo e pode ter zero ou mais
lagos internos. A Figura 5 mostra uma face com dois lacos internos. O lago ¢é

formado por uma seqiiéncia de meia-arestas;

-
-

F 3

Lagcol — T~ |] LL/— Laco 3
L 1 Lago2

”

FIG.5 . FACE FORMADA POR 3 LACOS: LAGO EXTERNO 3 E LACOS INTERNOS 1 E 2.

Aresta (“edge”): este elemento possui informagSio sobre as meia-arestas que o
compdem;

Meia-aresta (“Halfedge”): este elemento possui um ponteiro para um vértice e para a
meia-aresta seguinte e a anterior que definem a seqiiéncia do lago;

Vértice (“Vertex”): elemento que possui uma tripla de coordenadas (x, y, z).

3. ESTRUTURA DE DADOS

A estrutura de dados do USPDesigner foi implementada criando-se classes
para cada um dos elementos considerados como constituintes da estrutura do sélido.

Sendo que estes elementos seguem a hierarquia representada na Figura 6.

ListSolid

Prev F MNext
F

Prev <_‘ Rregion I_—’ Next

F
Prevq—-! Shell 7—» Mext
A

Prev‘_-_l ‘l':ace]___> Next
Prev 4—-| I’.oop‘] Next
Prevq—j Edee | 5 noxq
F
f

Prev‘:’ Halfedge }:’Next

-

Prev.__' \;ertex '_, Next

FIG. 6 HIERARQUIA DOS ELEMENTOS DA ESTRUTURA DE DADOS.

Temos:

A classe ListSolid ¢ a que contém a lista dos sélidos. Por existir apenas uma lista de
s6lidos no modelador de sélidos, esta classe foi implementada como um objeto
“singleton” de Gabrilovich (1999). O “singleton” é um objeto que pode ser

instanciado apenas uma vez. N&o é possivel existir a copia de um “singleton”.

10

template <class T»>
class Tlistselid {

public:

* get (identificador) // fornecide o identificador, & fornecido o ponteiroc
para o Elemento {ex.: para Face, usa-se getFace)

void addSeolid{TSolid<Ts) // adiciona s6lids na lista de s&lidos

void delsclid(Teolid<T> ou int} // remove sélido da lista
list<TSolid<T> >::iterator lstart it (void) // retorna primeiro s&lido da lista
ligt<T80lid<T> >::iterator lend it(void) // retorna filtimo s5lido da lista
private:

list< Tsolid<T> » 1lsolid; // lista de sé&lidos
}

A classe Solid foi implementada de modo convencional, pois podem existir vérias
nstincias dela ¢ ela nfio possui ponteiro de retorno para o elemento hierarquico

superior, pois sO existe uma instancia da ListSolid.

template <class T»
class TSolid {

public:
TSolid () // constructor
~TSolid () // destructor
* get (identificador) // retorna ponteiro
void addRegion {TRegion<Ts) // adiciona "regions" na 1lista de regions do
gélido
void delRegion (TRegion<Ts>) // remove regions da lista
void listRegion (veoid) // mostra contelidoc da lista

TRegion<T> * getRegion (int id) // fornecido o id, & fornecido o ponteiro

liet<TRegion<T> »>::iterator SRegions_it (void) // retorna primeira region
da lista

list<TRegion<T> »::iteratcxr Sregiend it (void) // retorna dltima region da
lista
private:

list«< TRegion<T> » *sregions // lista de regions

int solidno // identificador doc s&lido

A classe Region possui implementacio semelhante a da classe Solid com um
método para retorar o ponteiro de retorno para o sélido que possui o Region e um

outro ponteiro para o Shell externo.

template <class T>
class TRegion {

public:

TRegion () // constructor

~TRegion(} // destructor

void addshell (TShell<Ts } // adiciona “shells” na lista de “shells” da regido
void delsShell (TShell<T>) // remove “ghells” da lista

TSolid<T> *RSolid (void} // retorna ponteiro para o s8lido que possui esta
regiio

list «<TShell«T> >::iterator Rshell it (} // retorna primeiro “iterator” da lista
list «Tshell«T> >::iterator RShend_it () // retorna filtimec da lista

vold RSout {(TShell<T>) // seleciona "shell” externo

TShell<T> * RSout (void) // retorna ponteiro para o "shell” externo
private:

TSo0lid<T» *rsolids; // ponteiro de retorno para o sélido
list<TShell«T>» > *rghells; // lista de “ghells”

int regionno; // identificador da regisic

11

T8hell<T> *rsout; // ponteirc para o “shell” externo

Os membros hierarquicos da classe Shell: face, aresta, vértice, aresta e meia-
aresta podem ser representados separadamente do restante da estrutura de dados,

conforme a Figura 7.

| Shell
\ v :
Face Edge Verte
I i ‘

F 3

Loop [Halfedg

FIG. 7 REPRESENTACAO DA IMPLEMENTACAO.

Logo, a classe Shell tem o seguinte formato de implementacéo:

template <class T»
class Tehell {
public:
TShell ()} // constructor
~TS8hell () // destructor
void addFace (TFace<T:>)
veid addBdge (TEdge<Ts)
void addVertex {TVertex<Ts) // adiciona elementos na lista do shell
void delFace (TFace<T»)
vold deifdge (TEdge<Ts)
void delVertex (TVertex<Ts) // remove elementos da lista
TRegion<T> * SRegions (void) // retorna ponteiro de retorne para o
Region.
list<TFace<T> »>::iterator SFace_ it (void)
list<TEdge<T> >::iterator SEdge_it (void}
list<TVertex<T> >::iteratoxr SVert_it(void) // retorna primeiro elemento da lista
list«TFace<T> >::iterator SFend_it {void)
list<TEdge<T> >::iterator SEend_it (void)
list«TVertex<T> >::iterator $Vend_it (void) // retorna fltimo elemento da lista

private:
Tregion<T> *sregions // penteire de retorno para o Region
list «<TPace<T> » *gfaces // lista de faces
list <TEdge<T> > *sedges // lista de edges
list <TVertex<T> > *sverts // lista de vertex
int shellnec // identificader do shell

A classe face possui uma lista de lagos e um ponteiro especifico para indicar qual o

lago externo que delimita a face. Ela est4 descrita abaixo:

template <class T»
¢lass TFace {
public:

12

TFace () /[constructor
~TFace () // destructor
TLocp<T>* getLoop{),
TEdge<T>* getEdge(),
THalfedge<T>* getHalfedge{) // retorna ponteiro para o elemento especificado

void addlLoop (TLoop<Ts) // adiciona um lage na lista

void delLoop (TLoop<Ts) // removece um lago da lista

Tehell«T>* Fehell {void) // retorna ponteiro de retorne para o shell
TLoop<T>* Flout (void) // retorna o ponteiro para o lago externc

list<TLoop<T> >::iterator Fhoops_it{void) // retorna primeiro laco da lista
ligt<TLoop<T> >::iterator FLend it (void) // retorha Gltimo lago da lista

private;

list<TLoop<T> » *floops; // ponteiro para a lista de laco
TShell<T> *fshell; // ponteiro de retorno para o shell
TLoop<T> *flout; // ponteire para o lago externc
tnVector«<T,4> feqg: // equagdo da face

int faceno; // identificador da face

A classe loop possui um ponteiro de retorno para a face e um para uma meja-aresta,

que é inicio de um ciclo de meia-arestas que formam o laco.

template <class T»
class TLoop {

public:
TLoop {} // constructor
~TLoop () // destructor
TFace<T»* Lface (void) // retorna ponteirv de retornc para a face
TEdge<T>* LEdg (void) // retorna ponteiro para “edge”
private:
TPace<T> *lface; // ponteiro de retorno para a "face*
THalfedge<T> *ledg; // ponteiroc para “halfedge” que compde o lago
int loopmno; // identificador do lage
int length; // comprimento do lago

A classe Edge possui seu identificador e ponteiros para duas meia-arestas.

template <class T>
class TEdge {

public:

TEdge () // constructeor

~TEdge () // destructor

THalfedge<T> *Hel (void}) // retorna ponteiro para a primeira meia-aresta
void Hel (THalfedge<T> *h) // seleciona ponteiro come sende primeira meia-aresta
THalfedge<T> *He2 (void) // retorna ponteiro para a segunda meia-aresta

void He2 (THalfedge<T> *h) // seleciona ponteiro ceme sendo segunda meia-aresta
private:

THalfedge<T> *hel; // ponteiro para a primeira meia-aresta

THalfedge<T> *heZ2; // ponteiro para a sequnda meia-aresta

int edgenc; // identificador da aresta

A classe Halfedge nZo é incluida em nenhuma lista, sendo assim, necessita de
ponteiros para a proxima meia-aresta e para a meia-aresta anterior. Possui o seguinte

formato:

13

template <class T>
clags THalfedge {

public:
THalfedge (} // constructor
~THalfedge () // destructor
THalfedge<T>* mate (void) // retorna a ocutra meia-aresta que, em conjunto
com esta, formam uma “edge”
TLoop<T>* Wloop () // retorna o ponteiro para o lago
TEdge<T>* Edg () // reterna o ponteirc para o “edge”
THalfedge<T>* Nxt {) // retorna o ponteirc para a préxima meia-aresta
THalfedge<T>* Prv{} // retorna o ponteire para a anterior meia-aresta
TVertex<T>* Vtx() // retorna o ponteiro para o “vertex”
private:
TLoop<T> *wloop; /{ ponteiro para o lago
TEdge<T> *edy; // ponteiro para o “edge*
THalfedge<T> *nxt; // ponteiro para a préxima meia-aresta
THalfedge<T> *prv; // ponteirc para a meia-aresta anterior
TVertex<T> *vtx; // ponteiro para o “vertex”
int halfedgeno; // identificador da meia-aresta

A classe Vertex possui a coordenada do vértice (X, y, z, w), seu identificador e um

ponteiro para uma meia-aresta.

template <class T>
class Tvertex {

public:
TVertex(} // eonstructer
~TVertex() // destructor
tnvector<T, 4> VCoord (void) // retorna as coocrdenadas do vértice

veid VCoord (const tnvector<T,4>) // seleciona as cocordenadas para este
vértice

THal fedge<T> *VEdge (void) // retorna um ponteiro para uma meia-
aresta que utiliza este vértice
void VEdge (THalfedge<T>) // seleciona um penteiro para meia-aresta
private:
THalfedge<T> *vedge; // ponteiro para wuma meia-aresta gque utiliza este
vértice
tnvector<T, 4> vocoord; // coordenadas (%, v, z, w} deste vértice

int vertexno; // identificador do vértice

)

14
4. ENCAPSULAMENTO DA ESTRUTURA DE DADOS

A estrutura de dados foi implementada de forma que foram-se criadas listas
de elementos. No momento em que se criava um novo elemento, o programa criava
uma copia deste e armazenava-o na lista. Isto gerava uma dificuldade para se terem
definidas as relages entre os elementos de hierarquias diferentes. Devido ao fato de
que o nove elemento de hierarquia inferior se “comunicava” com a cépia do

elemento de hierarquia superior e as copias dos de mesma hierarquia.

Cépia . .
Lista TSolid P \\\s\usta TRegion
s1 ~ R1 | R2

Cépia

R1 R2

FIG. 8 COMUNICACAQ ENTRE OS ELEMENTOS NA ESTRUTURA ANTIGA.

Para aperfeicoar esta implementacfio passou-se a utilizar listas de ponteiros e nfio
mais listas de elementos. Estes ponteiros sdo os enderecos dos elementos. Entéo cada
elemento agora possui um ponteiro como referéncia. Isto gerou uma maior facilidade
no relacionamento entre os elementos, pois agora eles se “comunicam” com as listas

apenas para obterem os enderegos dos outros elementos.

15

Lisia TSolid Lista TRegion

X X [%
[t Ll

$1 | —— .| Ri|| R2

FIG. 9 COMUNICACAQ ENTRE OS ELEMENTOS NA ESTRUTURA ATUAL.

Modificou-se a estrutura de dados no seu nivel mais baixo. Para isto foram
alteradas, acrescidas ou retiradas algumas funcionalidades das classes que definem a
estrutura do sdlido.

Podemos destacar entre as alteracdes:

A inclusdo das classes na estrutura (exemplo da classe Region):

class iterator : public CSmartIterator<TRegicn<T> >
class itexator : public CSmartIterator<TShell<T> > {
public:
iterator (} {}:
iterator {const list<TShell<T> *>::iterator it}
csmartIterator<TShell<T> >{it) {};
~iterator (} {};
hii
iterator beginivoid} { return terator(rshells.begin());)
iterator end{void) { return iterator (rshells.end{)}; }

class const_iterator : public CSmartIterator<TRagion<Ts >
¢lass const_iterator : public CSmartIterator<TShell<T> > {
public:
const_iterator{) ({};:
const_iterator (const list<«T8hell<Ts
*>::congt_iterator it)
CSmartIterator<TShell<T> »{it} {};
~const_iterator{) {};
bi
const_iterator begin(void) const { return
const_iterator (rshells.begin());)
const_iteratcr end{void) const { return
const_iterator{rshells.end{)); }

Esta incluséo possibilitou a modifica¢do das funcionalidades da estrutura de

dados, como por exemplo:

16

void list8hell {void)
cout << "Shells: " << endl;
list<TShell<T> »::iterator it = rshells->begin(};
for (; it != rshells-»end () ; it ++)
} cout << (*it) .No{) << endl;
int delshell {TShell<T> *g) {
int sn=s-s>No{);
return (this->delshell (gn));

int delshell (const int &sn) {
list<TShell<T> »::iterator it = rshells->begin();
for (; it != rshells-»end{) ; it ++)
if {it->No() == =n)
rshells->erase (it} ;
return SUCESS;

return ERROR;

para

void listShell {void) [
iterator it = begin();
cout. << "sShells: " << endl;
for (; it '= end{) ; it ++}
cout << it->getId() << " »;
cout << endl;
}:
int delShel;(TShell<T> *s} { return (this->delshell (s->getId(})
yi ;
int delshell (const int &sn) {
iterator it = find(begin{), end{), TShell<Ts{sn));
if (it 1= end ()} {
rszhells.erase{it.GetIterator());
return 1;

return o;

Foi entdo implementado o “encapsulamento “ da estrutura de dados utilizada
no programa. Ou seja, prevenido o acesso nfo autorizado a determinados itens de
mformag#o ou a caracteristicas de funcionamento das classes.

O critério chave aqui é separar as partes volateis das partes estaveis da classe.
Encapsulamento pde uma baireira em torno das partes volateis, impedindo que
outros médulos da estrutura acessem as partes volateis da classe, outros mddulos
podem acessar apenas as partes estaveis da classe. Isso evita que outros mddulos
sejam afetados quando as partes volateis da classe sofrerem alteragBes. Isto significa

que o encapsulamento evita erros quando utilizamos toda a estrutura.

17
As partes volateis sfio as implementacSes do mddulo. Se o mdédulo é uma

classe tnica, as partes voldteis so normalmente encapsuladas usando as palavras
chave private: ou protected. Se 0 médulo um grupo compacto de classes, o
encapsulamento pode ser usado para negar acesso a classes inteiras do grupo.

As partes estaveis sdo as interfaces. Projetar uma interface limpa e separar a
interface da implementagdo, meramente permite ao usuario usar a interface. Mas ao
encapsular (colocar em uma cépsula) a implementagdo forca o usudrio a usar a

interface.

18
5. OPERADORES DE EULER

Os operadores de Euler sdo usados como uma linguagem intermediaria em
sistemas de modelagem de sélido B-rep. S&o capazes, por exemplo, de adicionar ou
retirar vértices, arestas ou faces, simplificando a criacdo e edigdo dos sélidos. A
consisténcia topolégica é mantida pela geometria ¢ nfio o inverso. Assim os
algoritmos de alto nivel processam a geometria e utilizam os Operadores de Euler
para garantir a consisténcia topolégica.

O principal objetivo dos operadores de Euler € simplificar a manipulagdo das
complicadas estruturas B-rep. A idéia principal é que a construciio dos modelos
possa ser realizada passo a passo pelo uso de um conjunto de operadores que
manipule a estrutura de dados B-rep e que efetivamente esconda detalhes de
implementacfo da representacio.

Os operadores de Euler tornam possivel a construgfo incremental de objetos
em uma, duas ou trés dimens@es de maneira semelhante a desenhar linha a linha.
Eles também facilitam alteracSes locais da forma, caracteristica que é muito
conveniente ¢ eficiente para projetistas de modeladores de sélido B-rep.

Tradicionalmente, denota-se os operadores de Euler por um conjunto de letras
composto pelas iniciais do que o operador estd realizando. Exemplo: make edge and
vertex, torna-se o operador MEV. Cada operador de Euler possui um operador
inverso.

Os operadores de Euler utilizados no modelador de s6lidos USPDesigner sdo
apresentados abaixo com os seus operadores inversos:

MVSF/KSVE (Make/Kill Vertex Solid Face) — este € o primeiro operador a ser
aplicado para iniciar a construgio de um sélido. Este operader cria os seguintes
elementos: um sélido, uma regifio, um “shell”, uma face, um laco, um vértice (Figura
10). Os par@metros de entrada sdo as coordenadas do vértice. Para fins de
representacdo e permitir associar o lago ao vértice que esta sendo criado, cria-se uma
meia-aresta adicional que permite realizar esta associa¢do. Para definir a existéncia

de uma aresta € necessaria uma outra meia-aresta.

19

@He
- ” V
FIG. 10 REPRESENTACAQO DE UM VERTICE V COM UMA MEIA-ARESTA HE (SEM

EXISTENCIA DE ARESTA).

MEV/KEV (Make/Kill Edge Vertex) — em geral, ap6s iniciar a construgdo de um
s6lido usando o MVSF, é possivel acrescentar mais vértices. O operador MEV cria:
uma aresta e um vértice (Figura 11). A aresta ligard o vértice fornecido como

pardmetro de entrada ao novo vértice que sera criado;

(a) Hel Hel M (b) Hel v Hel \ He3
:> He2 He2 ‘:> He
He4
v v v \% v

FiG. 11 (A) MEV CRIANDO UMA MEIA-ARESTA; (B) MEV CRIANDO DUAS MEIA-
ARESTAS,

MEF/KEF (Make/Kill Edge Face) — O operador MEF cria uma aresta e uma face
(Figura 10). A aresta ligard um par de vértices (fornecidos como pardmetros de
entrada). No exemplo da Figura 12, originalmente existia uma face F1 definida por
seis meia-arestas. Em seguida, apds o uso do Operador MEF, existirdo duas faces:
F1 (formada pelas meia-arestas em sentido anti-horario V1 -> V4 -> V3 -> V2) ¢ F2
(formada pelas meia-arestas em sentido hordrioc V1 ->V2->V3->V4).

\% He3 Y A\ \%

Vv
FIG. 12 EXEMPLO DE UTILIZACAO DO OPERADOR MEF, FACE F2 FOI CRIADA.

20
KEMR/MEKR (Kill/Make Edge Make/Kill Ring) — Em algumas situacdes, €

desejavel que uma face tenha lagos internos (furos). O operador KEMR realiza a
primeira etapa na criagdo de um lago interno: divide um lago existente em duas
partes. Ou seja, ao remover uma aresta, ele deixa um vértice isolado dos demais que
formavam o laco inicial. E a partir deste vértice isolado, € criado o novo lago. Este
operador remove uma aresta, criando um lago. No exemplo apresentado na Figura
13, o lago externo possui, inicialmente, cinco vértices. Apés a aplicagdo do operador
KEMR, a face possui dois lagos: um com quatro vértices € 0 outro com um Unico

vértice.

= | QD

FIG. 13 EXEMPLO DE UTILIZACAO DO KEMR.

KFMRH/MFKRH (Kill/Make Face Make/Kill Ring Hole) — O operador KFMRH
transforma duas faces em uma tnica face, colocando o lago externo de uma das faces
como lago interno da outra face. Utilizado, por exemplo, em casos em que o operador
KEMR foi aplicado para iniciar um furo e foram adicionados vértices que chegam
até a face oposta, e deseja-se que este furo seja passante. Este operador remove uma

face e cria um lago na outra face. Um exemplo é apresentado na Figura 14.

Face 1

Esta face .
serd A 9

FiG. 14 EXEMPLO DE UTILIZACAO DE KFMRH.

21
KSFMR/MSFKR (Kill/Make Shell Face Make/Kill Ring) — O operador KSFMR

une dois “shells” em um tnico “shell”. SZo removidos uma face, um “shell” e,

talvez, uma regido, e ¢ criado um lago na face incidente (Figura 15). Naturalmente,
todas as informagSes do “shell” a ser removido sdo transferidas para o outro *“shell”,
Na Figura 15 sdo apresentados dois exemplos de aplicagdo do operador KSFMR. No
Exemplo (a), os dados do “shell” 2 (vértices, faces, arestas) sdo colocados no “shell”
1 (e o “shell” 2 ¢ entdo removido) e a face que coincidia com outra do “shell” 1,
torna-se um lago interno da face do “shell 17, deste modo criando um furo nio
passante do “shell” 1. Ja no exemplo (b), o “shell” resultante nio apresenta furos,

mas apresenta ainda uma face com um lago interno.

Shell 1 4—— Shelll

Shell 2

Shell 2

,':(.a i \oo s

FIG. 15 (A) A UNIAO DOS DOIS “SHELLS” GERA UM FURO NAO PASSANTE (B)
UTILIZAGAO DE KSFMR.

Durante a construgdo de modelos com Operadores de Euler, a topologia é
mantida valida segundo a equacgfio de Euler ~ Poincaré, mostrada na equagio abaixo:
v—et+tf=2*%(-h)+r
Sendo: s pecas disconexas, f faces, e arestas, v vértices, h furos, 1 lacos e r anéis,
tem-se quer=1-1.

Ao final de uma seqiiéncia de Operadores de Euler assume-se que a geometria do
sélido esta correta, mas durante os estagios intermedidrios nio ha como manter a
topologia e a geometria consistentes devido a presenca de faces n#o planares; que,
freqlientemente, ndo sdo possiveis de serem representadas por nenhuma forma
matemiética. Logo, os operadores de Euler no sfio operadores seguros por si, mas

devem ser colecionados em seqiiéncias que fornecam um significado.

22
6. MODIFICACOES NOS OPERADORES DE EULER

A reestruturagdio na implementacdo da estrutura de dados tornou necesséria a
modificacdo de todos os niveis de abstragdo. Por ser o nivel intermediario entre a
estrutura de dados e o terceiro nivel, os operadores de Euler sofreram grandes
modifica¢Ses em sua implementacio.

A principal se refere ao interfaceamento entre os niveis, ou seja, alteracSes
nas interfaces utilizadas para comunicagdo entre os niveis. De modo que, as
interfaces foram alteradas por mudancas na estrutura e pelo encapsulamento da
estrutura,

Como a estrutura de dados estd encapsulada, basta o conhecimento das
interfaces vindas desta que sdo utilizadas nestes operadores, por exemplo, para se
obter informacGes de algum dos elementos. Antes havia a necessidade de se conhecer
a hierarquia dos elementos da estrutura de dados. Com o encapsulamento &
desnecessaria esta informacgéo, tendo em vista que a visualizacéo desta hierarquia na
implementacéo esta dentro da parte volatil da estrutura de dados. Ou seja, a obtengdo
de dados dos elementos da estrutura de dados, que antes era feita por funcionalidades
que percorriam toda a hierarquia envolvida entre o elemento referéncia e o elemento
requerido, agora € feita por uma tncia chamada que foi construida em todos os
elementos da estrutura de modo que se esconda a hierarquia ¢ o modo de

implementacdo utilizado.

list «TFace<T»>>::iterator £;

f-> SRegione () -»>RSolid(} ->No();
para

T8hell«T>::iterator_f f;
f->getsolid () -»>getId();

23
7. OPERADORES DE ALTO NiVEL

Este € o nivel mais alto de abstraco, onde se interage com o usudrio através
de opera¢des de construir, modificar, armazenar, copiar e mover sblidos. Neste nivel,
o solido € descrito por um conjunto de operagdes de alto nivel, que permite o
interfaceamento com o usuario.

Temos os operadores locais que permitem que algumas caracteristicas dos
solidos possam ser modificadas pelo usudrio preservando as consisténcias
topolégicas e geométrica do local modificado. Por ndo realizarem alteracdes em
dreas externas & localidade das caracteristicas na que eles se aplicam, ndo sdo
realizadas verificagdes sobre o s6lido apds a realizagdo de uma operagio local.

Um operador local pode ser considerado uma extensfio dos operadores de
Euler, visto que um operador local ao ser acionado pelo usuirio definird uma
sequéncia de operadores de Euler que a implemente.

Como exemplo da rotina bésica de um operador local, temos a cria arco de
circunferéncia, que define a aproximacfo poligonal de um arco de circunferéncia, a
partit de um ponto fornmecido. O algoritmo que implementa esta rotina pode ser
definido utilizadno apenas o operador de Euler MEV. Para se definir um arco de 360°

o ultimo operador MEV deve ser substituido por um operador MEF.

MEF

F1G.16 CRIA ARCO DE CIRCUNFERENCIA.

Outro exemplo de rotina bésica de um operador local temos a extrusfo
translacional. Esta deve ser aplicada a uma face e sera realizada segundo um sentido

unico. Podendo entdo ser gerado por este um cubo.

24
Os solidos primitivos criados no modelador USPDesigner sdo o cubo,

cilindro, cone, esfera, tubo e torus. Estes sdo gerados por sequéncis de operadores

locais. Como exemplo a rotina de implementagéo de um cubo.

template <class T»>

clase TBOX {
TMVSF<T>: :instance() .high{xrn,dn, fn,vn,a,b,c);
TMEV<T>: :instance() .high(sn, fn,vn,vn+l,a+x,b,c);
TMEV<T>::instance() .high(sn, fn,vn+l,vm+2, a+x,bty, ¢l ;
TMEV<T>::instance ()} .high(sn, fn,vn+2,vn+3,a,b+y,c) ;
TMEF<T>: :instance () .high(sn,vn,vn+3,fn, fn+l}) ;
MSD_lowMakeSweep<T> {fac, ¢, 0, z); //operador local de extrusio
g->Color (0,0,1);
g~->Kind (BOX) ;

int MSD_lowMakeSweep {TFace<T» *fac, T dx, T dy, T dz) {
for (; it!=fac->end{); it++) {
TMEV<T>: :instance{) .low(scan, scan, maxv++, v->VCoord() [0]+dx,
v->VCoord () [1] +dy,v->VCoord () [2]) +dz) ;
while {(scan!=£first)
TMEV<'T> : :instance () . low (scan->Nxt (}, scan->Nxt (), MAXV++, V-
»VCoord () 0] +dx,
v->VCoord () [1] +dy, v->VCoord () [2] +dz) ;
TMEF<T>: : ingtance () .low(scan->Prv{), scan->Nxt{)->Nxt{), maxf++); }
TMEF<T>::instance () .low{scan->Prv{), scan->Nxt{)->Nxt (), maxf++};

EMULE Dr ke Mundehadun de Sk Unkaliey

Vs Muddader dr 46 hdu Uiditnow

© _iws Gebsna + | StEm 4
& 2]
b b
& €y
et - ad
o 3 ppen| q
L w5 |
Fasel Tad I Db Tad I
Tk e +
Ratal Ve Petals Y +
Focy (4] Facw i [4
i [1] Lee;
"1‘ m‘;;gu H;M"Q‘mudeﬂ3
’Nm:ﬂj(umm,mm_ 1000060 - 3 569007} foornde [0 5 ¥ RRNREC0, T OB 6 SC0000)
7E.04 38 R -
9P D | Lt bt [Leiact Face 3] VAP Dengaer | Lt own [SovctFacr 4

FiG.17 EXTRUSAO DE UMA FACE DE UM CUBO.

25
8. OPERACOES BOOLEANAS

Algoritmos para determinar operacGes entre dois objetos podem ser utilizados
por modeladores de representacdo B-rep. Concettualmente, estes algoritmos ndo sdo
dificeis, mas sua implementacdo requer um substancial trabalho por vérias razdes.
Considerar as varias posigSes espaciais de incidéncia das primitivas geométricas em
trés dimensdes pode ser trabalhoso.

A ndo redundancia das informagBes geométricas reduz a possibilidade de
contradicdo dos dados e portanto aumenta a robustez. As coordenadas dos vértices e
as equagdes dos planos dos modelos poliedrais sdo exemplos de redundancias; pois,
geralmente, os vértices ndo estdo exatamente sobre os planos, mas podem estar
deslocados por uma quantidade muito insignificante. Logo a forma e o contorno das
faces podem néo ser consistentes.

Para a implementag8o das Operagdes Booleanas a manipulagio dos modelos
dos objetos pode ser dividida em duas fases distintas: calculos numéricos e
modificacdes na estruturas B-rep. A fase de célculos numéricos é representada por
dois passos: calculo de todos os pontos de intersecgio entre os dois objetos e andlise
da vizinhan¢a dos pontos de intersecgdio. A fase de modificagio da estrutura B-rep é
representada por quatro passos: geracfio de arestas nulas, andlise dos pontos de
intersecgdo e criacio dos circuitos de arestas, recorte das arestas nulas e unifio dos
devidos componentes para criar o objeto resultado da operacio booleana.

Existem trés tipos de Operagdo Booleana: unifio, subtragio (ou diferenca) e
interseccdo. Entretanto, a literatura pesquisada mostra que é necessério a
implementacfo de apenas um tipo de Operagéio Booleana, pois as outras duas podem
ser realizadas baseada na que for construida, utilizando o conceito de s6lido negativo
(indicado como “NS” — “Negative Solid”).

Um s6lido negativo tem volume negativo. Logo, implementar uma fun¢io
para gerar sélido negativo requer apenas inverter a orientacdo das normais das faces
do solido. Para inverter as normais das faces, invertemos a orientacdo do conjunto de
meia arestas que formam a face.

Logo, dado dois s6lidos: A e B, as operagdes booleanas podem ser expressas como:

26
Unifio (operador bésico): AU B

Subtracio: A - B=NS(NS(A)UB)
Intersec¢do: A M B =NS(NS(A) U NS(B))
Subtracfio (operador basico): A — B
Unido: AU B =NS(NS(A)-B)
Interseccdo: A N B = A — NS(B)
Intersecg¢do (operador basico): A N B
Unido: A L B =NS(NS(A) N NS(B))
Subtracfo: A — B = A n NS(B)
Nesta implementacdo, escolheu-se como operador basico a Operagéo

Booleana Unido.

RSP Deakprer Wedeladz de Sérido Didiiun

299873 ' ALy

Perspective —— Parspechve

Frusase
(557 Dy [LT] 1 UaP Sesgrar] Loft b [Eaocto 3

FIG. 18 OPERACAO DE SUBTRACAO DE DOIS CURBOS.

Podemos dividir a Operago Booleana Unifo nos seguintes passos:

1. Determinar os pontos de interseccdo entre as faces dos sélidos A e B;

2. Criar novos vértices, novas arestas e novas faces caso sejam necessarios;

3. Classificar os elementos geométricos dos s6lidos A e B e determinar quais devem
ser eliminados da estrutura de dados pois néo fazem parte do sélido resultante;

4. Eliminar os elementos geométricos que foram selecionados na etapa anterior;
Colar os sélidos A e B, de modo que formem uma unica estrutura de dados;

6. Limpar dados redundates (caso ainda existam);

27
Na literatura, o que difere uma implementagio de Operacdo Booleana de

outra, € o conceito envolvido para realizar a etapa 3 — classificagio. Em geral, as
OperacSes Booleanas em modeladores “B-rep” consistem basicamente em
determinar pontos de intersecgdo, criar novos vértices, apagar elementos
desnecessérios e juntar a parte restante do sélido A com o restante do sélido B. Mas,
determinar o que deve ser apagado requer andlise local do sélido. Devemos
classificar os elementos em: pode ser e ndo deve ser retirado da estrutura de dados. A
énfase € para ndo apagar, ou seja, elementos geométricos redundantes s3o permitidos
em etapas intermediarias da Operagio Booleana, pois a etapa final consiste em

limpar a estrutura de dados, retirando-os.

28
9. MODIFICAGOES NAS OPERACOES BOOLEANAS

Como explicado no item anterior, a execucdo da operacdo booleana unido
consiste em 6 passos. Pode-se dizer que nos algoritmos de determinacio de pontos de
intersecgdo entre as faces, conseqiiente criacdo de vértices e arestas, classificacio dos
elementos a serem eliminados e efetiva eliminacdio, as mudangas realizadas ap6s a
reestruturacéo da estrutura de dados limitam-se 3 adaptaggo do interfaceamento entre
os niveis de programagfo (operadores de Euler e estrutura de dados) .

E no passo da colagem dos dois s6lidos que a simplicidade da execugdo do
programa obtida pelas mudancas estruturais se fazem bastante evidentes. Nesse
passo, para cada region do sélido 2 é criada uma nova region no sélido 1 que para
guardar suas shells. Quando “migrados” todos os shells de uma region, deleta-se a
region, quando “migradas” todas as regions de um sélido, deleta-se o sélido. Depois
faz-se uma busca no sélido restante por faces sobrepostas para que sejam removidas.
Esses tarefas sdo feitas por classes do mesmo nivel dos Operadores de Eules, por isso
a simplificagdo se da pelo mesmo motivos: facilidade em se trabalhar a estrutura de
dados.

Na estrutura antiga, devido a légica de criagio e ligagdio dos elementos,
muitos dados relativos a Ids precisavam ser guardados para criagdes de cépias nas
listas de elementos do sélide 1 e posterior exclusdo da estrutura do sélido 2. No
programa novo ha apenas uma mudanga nos ponteiros e essa migracio se d4d com
poucas linhas de comando.

Estrutura antiga:

dn = d-»>No(};

rn d->8Regions () -»No{); // save Fewlon A3 Lo erase wbiers
TRegion<T> r (hewr Id);

sl->addRegion(r);

TRegion<T> *nr = sl->getRegion(newr};:
nr->addshell (*d) ;

nr->RSout (nr->RShells ());
TRegion«<T> *rp = s->getRegionirn);

rp->delshell (dn) ;
d = nr->getsShell{dn);

if (newd = -1) d->No(newd);

29

Estrutura nova:

TRegion<T>*r = new TRegion<T> {newr Id);
gl-»addRegion (r} ;

r->addshell (4) ;

r-»RSout {d) ;

30
10. PROPRIEDADES

O modelador USPDesigner consegue obter quatro propriedades do s6lido, sdo
elas a Area, 0 Volume, O CG, e os Momentos de Inércia. Sendo que estes trés
ultimos s#o calculados pela divisdo o sélidop em tetraedros e a Area & calculada pela
divisdo das faces do sélido em tridngulos. Estas propriedades nos serviram de base
para comprovar a consisténcia do sélido, bem como sua correta formagio.

Estas se relacionam unicamente com a estrutura de dados que ao ser
encapsulada fez necessdria uma reestruturagio no intefaceamento entre estes
mddulos. A l6gica de célculo das propriedades continua a mesma, entretanto no que

se refere a implementaco foi alterada.

list<TFace<T> »::iterator it = d->8Face_it();

list< TLoop<T> »::iterator it = f->Floops_it () ;

for { ; iti=f->FLend it (); it ++)

// exemplo de alteracBes de implementagio no volume
TShell<T>::iterator_f it = d-»getFirstFaceIterator () ;
TFace<T>::iterator it = f->getFirstLooplterator():
for { ; itlzf-send(); it ++ }

31
11. VISUALIZACAO

O USPDesigner utiliza bibliotecas de visualizagdo OpenGL.

O modelador USPDesigner possui quatro vistas do sélido (lateral, superior,
frontal e perspectiva) e uma tela de informagSes sobre os comandos utilizados. O
usuario pode utilizar os comandos que estfio na tela do modelador, ou podem realiza-
los na janela de comandos. Selecionando o sélido, face, aresta ou vértice o usudrio
visualiza suas propriedades computacionais (posicio, ID, composigdo).

As rotinas de visualizagdo se relacionam diretamente com a estrutura de
dados e com rotinas de alto nivel. Apds o encapsulamento da estrutura e
modifica¢Bes nos operadores de alto nivel fez-se necessiria uma modificacdo na

implementagdo das rotinas com vista em todo o iterfaceamento entre os médulos.

g
Visas -
= wnitgne
Ay
e s g
© Bnah Shubey |
A
R e
Lt
G |
;] R GaForeaz GTS/AGP/SSE
ngerse Gar ool
o ¥ 4 Radprars Vandor NVIDUA Copanan
S Tast AmtrErs Varsion 131
R R | eoEnITT
Pkt yima ¢ 506 [17s Votwme 1 931 Nabses
Zold (1ys Rremts 55 1 fded
CGEN > 0 UDIDND, y 8 0000D, 1 3505020
nare:
s TSI
rrancine 2 - tperervee | swagacne e
W Dpagnae | Lot [T 100 o iy - ~0.000000
T =) 008 000
2 = -0 00000

FIG. 19 TELA COM AS QUATRO VISTAS POSSIVEIS E TELA DE INFORMACOES.

TRALGE Duaiqnin Medeladin e Seiidn Diddtws

i Cpnary

1ing
B Wity
F Astinlaring
7 Par Ydns et
v Onatry

Penpecive

FPaAa3
AR Geigrar| Lot pomon [CwiciSos o

FIG.20 UMA DAS VISTAS INDIVIDUALMENTE.

SRUSE eoiyran - Hudeladia dhe 5 osdy Diditicr

Mg Ted
G] Ann st GEFONER? GTS/AGRYSSE
5 - Feanaeon s Vendor NVIDIA Corgaralion
ety Viewe & Randarur's Verslan: 131
® 108585
ol (1}'s Vohumw it 125 00GA00

E:eu
mgrcia 1

box 0
vgrw!ig?sss

Ll
FPAM Ganpacive

| Canigam | | ketmm [Sreciias o

|

FIG.21 PROPRIEDADES DO SOLIDO.

33
12. CONCLUSOES

Neste trabalho foi apresentado uma nova implementago para a estrutura de
dados do modelador de sélidos B-Rep didatico USPDesigner. Para este fim
apresentou-se um estudo da estrutura original do modelador em todos os niveis e o
conceito de implementagio do encapsulamento de estruturas.

Foi proposta uma nova estrutura de dados, constituida pelo conceito de
encapsulamento, que permiti ao usuério utilizar as interfaces dos médulos sem
visualizar a implementagdo destes. Bem como utilizar as propriedades dos elementos
sem precisar conhecer toda a hierarquia da estrutura.

Isto facilitou o entendimento da estrutura e o acréscimo de médulos ou
operagdes, tendo em vista sua implementacio. Diminuiu-se linhas de codigo e tornou
mais simples a acessibilidade e visualizacgo pelo ponto de vista de programacio.

Esta nova estrutura tornou a utlizagdo de memoria mais eficiente, tendo em
vista que modificou-se a estrutura das listas utilizadas, nio se construindo mais
cdpias e sim guardando ponteiros mais consistentes dos elementos.

A partir desta nova estrutura encapsulada e mais robusta, modificou-se todos
os demais niveis de abstracdo, sempre auxiliado pela simplificagdo do
interfaceamento entre eles e pela facilidade de visualizacdo da estrutura, chegando
até as rotinas de visualizagdo. Estas comprovaram que as melhorias de tempo e
utilizacdo de memoéria impostas pela nova estrutura foram consolidadas e n3o
afetaram a transcricdo grafica dos elementos criados pelo modelador.

Portanto, ganhou-se um modelador com estrutura mais simples, com maior
aceitabilidade para mudangas e novas implementagdes, com ganho em tempo de

compilagdo, meméria utilizada e linhas de cédigo.

34
Apéndice A - ALGORITMO DE OPERACAO BOOLEANA

A operagio booleana pode ser dividida em diversas etapas, que estdo

representadas na Figura 21, onde estdo as principais funcdes de auxilio ao algoritmo

de operagdo booleana:

BooleanSolid
(alto nivel)
I BooleanSolid
Negative (baixo nivel) VerifiRegion
i I I I
Sewfl VerifyLoops_Sheli2 KillBridgeEdge TCleanSolid TGlue
. SetFace KillFaces
Facelntersection
Facelntersection
— |
FPointlntersection SortPoint LinkIntersection Edgelntersection
ExistFace VerifyLoops VerifvLoopsBoolean
SetFace KillFaces
I ! Matorial KillFace
Paralell Faces nternal_Materia (recursivo)

FiG. 22. Prancipals FUNCOES DO ALGORITMO DE OPERAGAO BOOLEANA.

a) BooleanSolid (int snl, int sn2, op)
Pardmetros de Entrada:
snl — identificagdo do primeiro s6lido;

sn2 — identifica¢do do segundo sélido;

35
op — tipo de operagdo Booleana a ser realizada; pode ser Unifio, Subtracio,

Intersecgio;

Fungdo de alto nivel que implementa a interface com o usu4rio. Recebe os
identificadores de dois sélidos entre os quais se deseja aplicar a operagio booleana
de tipo op.

Inicialmente, o algoritmo verifica se estes dois sélidos existem. Em caso
verdadeiro, conforme a operago op, um procedimento adequado é realizado:

® Unifo: utiliza a fungdio BooleanSolid com os ponteiros dos sé6lidos;

® Subtracfo: o primeiro sdlido é transformado em sélido negativo com o
uso da fungfio Negative. Em seguida, ¢ utilizada a funcio BooleanSolid
com os ponteiros dos dois s6lidos. Em seguida, o s6lido resultante &
enviado para a fingdo Negative. Finalmente, verifica-se se existe alguma
falha nas regides do sélido resultante, com o uso da funcdo
VerifyRegions;

* Interseccdo: os dois sélidos sdo transformados em sélidos negativos pela
funco Negative. Em seguida, é utilizada a fungdo BooleanSolid com os
ponteiros dos dois sélidos. No passo seguinte, o sélido resultante &
enviado para a fungdo Negative. Finalmente, verifica-se se existe alguma
falha nas regiBes do sélido resultante, com o uso da funcdo
VerifyRegions;

b) Negative(TSolid<T> *s)
Pardmetros de Entrada:
s — ponteiro para o sélido;

Esta funcdo transforma um s6lido em um sélido negativo. Ocorre a inversdo
das normais das faces. Para que isto ocorra, deve-se inverter a orientacfo dos lagcos
que formam o sélido (Figura 22).

Logo, todas as arestas devem ser analisadas para que a inversio das meja-
arestas ocorra de forma coerente para que seus ponteiros mantenham a integridade da

estrutura topolégica.

36

F1G 23. ILUSTRACAO DE MUDANCA DE SENTIDO DAS MEIA-ARESTAS.

c) VerifiyRegions(TSolid<T> *s)
Parfimetro de Entrada:
s — ponteiro para solido

No modelador de sélidos, o s6lido pode ter regides com mais de um “shell”,
Ou seja, além do “shell” externo, o s6lido possui “shells” internos.

Esta funcdo, verifica se existe alguma regido do sélido em que o “shell”
externo esta com volume negativo. Se encontrado, este “shell” negativo deve ser
transformado em “shell” interno de uma regifio com “shell” externo adequado. A
procura deste “shell” externo adequado deve parar, quando for encontrado um

“shell” que engloba o “shell” negativo.

d) BooleanSolid (TSolid<T> *sl,
TSolid<T> *s2)

Parametros de entrada:
sl — ponteiro para o primeiro sélido;
s2 — ponteiro para o segundo sélido;

Funcfo principal do algoritmo. Ela realiza a chamada de outras funcdes
auxiliares.

No decorrer do algoritmo, vérias listas com identificadores de elementos
geometricos sdo utilizadas para guardar informagSes:

e ListFacel — guarda os identificadores das faces que deverfo ser

removidas do primeiro sélido;

37
o ListFace2 - guarda os identificadores das faces que deverdo ser removidas

do segundo s6lido;

e ListEdgel - guarda os identificadores das arestas que nio devem ser
removidas do primeiro sélido;

o ListEdge2 - guarda os identificadores das arestas que n#o devem ser
removidas do segundo sdlido;

e ListEdge — guarda uma lista formada por uma classe DEdge que possui
dois identificadores que correspondem a arestas do primeiro e segundo
sélido que possuem vértices com coordenadas iguais;

Estas listas foram escritas utilizando-se o “container SET” do STL. Este
“container’”’ ordena os elementos no momento de insercéo de elementos. Deste modo,
as listas estdo sempre em ordem crescente em relacdo ao nimero de identificacéo e
nfo existe elemento repetido na lista.

No primeiro passo, devem ser encontrados os pontos e segmentos de reta de
intersec¢io entre os dois sélidos (para estes serem transformados em vértices e
arestas). Esta € a etapa que exige maior tempo de processamento, pois devem ser
verificadas as interseccGes de todas as faces do primeiro s6lido com todas as faces
do segundo sélido. Na atual implementacio, é verificado se a face F1 (do primeiro
s6lido) e a face F2 (do segundo sélido) possuem normais ndo colineares. Caso as
faces satisfagam este requisito, realiza-se uma verificagio utilizando a fungéo
f2cutfl para retirar os casos em que as faces tem normais nfo colineares, mas

estdo afastadas uma do outra (Figura 23),

i N1
F1 N2
F2

FIG. 24. APESAR DAS FACES F1 E F2 POSSUIREM NORMAIS DIFERENTES, ELAS ESTAO MUITO AFASTADAS
UMA DA OUTRA, O QUE IMPEDE A EXISTENCIA DE UM PONTO DE INTERSECGAO.

Se as faces nfio estiverem muito afastadas, é feita a chamada da funcéo

Facelntersection, que determina os pontos e segmentos de reta de intersecgdo

38
entre as duas faces e os transforma em elementos geométricos da estrutura de

dados: vértices e arestas, conforme seja necessario.

Em seguida, utiliza-se a fung8o SetFace para determinar quais faces devem ser
removidas. E nesta fungéio que esté o algoritmo de classificacio de diedros, que
foi baseado no trabalho de Chiyokura (1988). Duas listas sdo formadas neste

processo: ListFacel e ListFace2.

No passo seguinte, deve-se determinar o conjunto de arestas que nfo podem ser
removidas quando ocorrer a remocdo das faces. Logo, ListEdge deve ser dividida
em ListEdgel (arestas do primeiro sélido) e ListEdge2 (arestas do segundo
s6lido). Durante este processo, pode-se verificar se as duas meia-arestas que
formam a aresta em questHo, s80 vizinhas a faces que devem ser removidas (que
estdo em ListFacel e ListFace2). Em caso afirmativo, significa que, apesar da
aresta estar na lista de arestas que nfio deve ser removida, neste momento, esta
aresta em realidade pode ser removida . O exemplo na Figura 24 demonstra este
caso: durante a aplicagdo de operagdo booleana de unifio entre os dois sélido S1 e
S2 as arestas E1 e E2 sdo criadas e inseridas em ListEdge; em seguida, o
algoritmo verifica que E1 é vizinha das faces F1 e F2; 0 mesmo ocorre para E2
que ¢ vizinha de F2 e F3; logo, E1 e E2 sdo retirados de ListEdge para que nos

passos seguintes, estas arestas possam ser removidas, para criar uma Gnica face

néo plana.

39

s1 o2
E3 E9 E4
-‘ :---.: E71F E f E F3 ES
. 1 1 = 2
, E[—Ar. . Es (1| Eio |2]|Es
E E .n i
10 |
E
F4
| |

FiG. 25. EXEMPLO DE VERIFICAGAC DE ARESTAS QUE CONTORNAM FACES QUE DEVEM SER REMOVIDAS.

Agora, faces indesejaveis devem ser removidas, utilizando a fungio KillFaces.
Envia-se como pardmetro, o ponteiro para o solido, a lista que contém arestas que
ndo devem ser removidas para este sélido e a lista de faces que devem ser
removidas deste sélido. Duas chamadas desta funcdo sdo realizadas, uma para
cada sélido.

40
Deste ponto, sfo realizados ajustes nos dois sélidos (alguns destes ajustes foram

implementados no algoritmo de corte) para que os sélidos estejam adequados para
realizar a colagem. O primeiro ajuste é a remogio de arestas ponte. E verificado se
ainda existe alguma face que, apesar de ter sen identificador na lista de faces que
devem ser removidas, ainda esta na estrutura do sélido. Se for encontrada alguma
destas faces, é chamada a fungdo KillBridgeEdge (esta fungéo esta descrita no

operador de corte).

O préximo ajuste € verificar se existe a necessidade de criar novos “shells”.
Chama-se a func¢fo VerifyLoops Shell2 (esta fungéo esta descrita no operador de

corte).

O préximo ajuste remove regides nulas. Uma regido nula possut: “shell” nulo
com nenhum vértice ou nenhum “skell”. Regides nulas podem ser criadas pelo

ajuste de criar novos “shells” (que também cria novas regides).

Em seguida, os solidos tem sua estrutura de dados passadas por uma limpeza, com

o uso da fung¢do TCleanSolid.

O pentltimo passo agora € colar os dois sélidos usando a fungdo TGlue. O motivo
de tantos ajustes e limpeza € para que a fungdo de colagem funcione corretamente.
A topologia da intersecgdio entre os sélidos precisa estar completamente igual para
que a colagem ocorra, caso contrario, o algoritmo nfio conseguira colar os dois

solidos. Para ganhar desempenho, esta funcfo TGlue fo1 modificada de modo a s6

considerar as faces que ainda existem e que deveriam ter sido removidas.
E finalmente, é realizada uma limpeza no s6lido resultante.
e) f2cutfl (TFace<T> *{, tnVector<T 4> &n)
Pardmetros de Entrada:
f — ponteiro para a face que estd sendo analisada;
n — equacdo do plano que pode ou ndo cortar a face f;

Esta funcio é semelhante a fungio f2cutfl utilizada no algoritmo de corte de

sélido. Ela retorna verdadeiro, caso a face f seja cortada pelo plano n.

41
f) Facelntersection (TFace<T> *f1,

TFace<T> *12,
tnVector<T,4> &nl,
tnVector<T,4> &n2}

Parimetros de Entrada:
f1 — ponteiro para face;
2 — ponteiro para face;
nl — equaco da face f1;
n2 — equacdo da face f2.

Esta funcdo obtém os pontos de intersecgdo entre as faces fl e f2, cria vértices
¢ arestas e armazena estas informacdes em ListEdge. Para este fim, utiliza-se uma
lista auxiliar para armazenar os pontos de intersec¢o: PointList. A determinagio dos
pontos de interseccdo € feita pela fungéio PointIntersection.

Os pontos em PointList sdo ordenados pela fun¢do SortPoint.

Utilizando o conjunto ordenado de pontos de intersec¢fo, devem ser criadas
as arestas de intersecciio. Para cada ponto de interseccfo, analisa-se a sua
classificagdo: se ja existe um vértice com as coordenadas do ponto, se 0 ponto esta

numa aresta, ou se o ponto estd no interior de uma face (Figura 25 a,b e c).

(74747

FIG. 26. (A) VERTICE COM COORDENADAS DO PONTO; (B) PONTO NA ARESTA (C) PONTO NO INTERIOR DO
LACO;

Se o ponto de intersec¢do estiver sobre a aresta (Figura 25b), entdo, a funcéo

Edgelntersection ir4 criar um novo vértice na aresta em questdo (Figura 26).

(J L7

FiG, 27. CRIACAO DE UMNOVO VERTICE NA ARESTA,

42
No segundo estigio, unem-se os vértices de interseccdo para formarem

arestas de intersec¢fio. Utiliza-se a fun¢fo LinkIntersection que retorna o ponteiro
para a aresta de intersecc#o.

Se os dois ponteiros para as duas arestas de intersec¢do (uma para cada face)
forem obtidos, entdo esta informacio é guardada em ListEdge. Do contrario, ocorreu
algum erro, pois é improvavel existir uma aresta de interseccdo em apenas uma das
faces.

Repete-se este processo até chegar ao final de PointList,

No final, PointList € removido pois ja nfo é mais necessario.

g) Edgelntersection(tnVector<T,4> &p, int &a, THalfedge<T> **hd)

Parametros de Entrada:

p — coordenadas do ponto de intersecgédo

a — situag8o do ponto: 0 — ponto fora da face, 1 — ponto no interior da face, 2 — ponto
na aresta, 3 — ponto no vértice;

hd — ponteiro para meia-aresta que tem ligagdo com o vértice de intersecgéo.

Esta fungéio s6 atua no caso em que a for igual a 2 (ponto na aresta). Nesta
situagdio, aplica-se o operador de Euler MEV para criar um novo vértice (Figura 9.6).
A variavel a tem seu valor alterado para 3 (ponto no vértice). O ponteiro hd fica
direcionado para a meia-aresta que tem ligac8o com o novo vértice criado.

Nos outros casos, retorna falso.

h) LinkIntersection (TFace<T> *f,
int s01,
int s02,
THalfedge<T> *hel,
THalfedge<T> *he2,
tnVector<T,4> pl,
tnVector<T,4> p2)

Pardmetros de Entrada:

f — ponteiro para a face;

s01 — situagdo do primeiro ponto de interseccéo;

s02 — situagdo do segundo ponto de interseccio;

43
hel — ponteiro para a meia-aresta que tem ligagio com primeiro vértice de

intersecgdo;
he2 — ponteiro para a meia-aresta que tem ligagio com segundo vértice de
interseccio;
pl — primeiro ponto de intersecgio;
p2 —segundo ponto de intersecgio;
Esta fungfio junta dois vértices de intersecgdo, criando uma nova aresta e
talvez uma nova face.
Podem ocorrer os seguintes casos:
e 3501 =1es02=1 (ambos no interior da face)
Deve-se criar um novo vértice na posi¢do pl, com a aplicacsio do
operador de Euler MEV. Em seguida, cria-se um novo lago, aplicando-se
o operador de Euler KEMR. Finalmente, cria-se um novo vértice na
posicdo p2, novamente com a aplicagdo do operador de Euler MEV

(Figura 27). Retorna o ponteiro para a nova aresta.

FIG. 28, ROTINA PARA QUANDO AMBOS OS PONTOS ESTIVEREM NO INTERTOR DA FACE.

e 501 =3es02=1o0us0l =1es02=23 (um vértice na face e outro no

interior da face)
Apenas aplica-se o operador de Euler MEV para criar um vértice na
posicdo no interior da face com o vértice disponivel (Figura 28). Retorna

o ponteiro para a nova aresta.

Ly

FIG. 29. CRIANDC UM NOVO VERTICE E UMA NOVA ARESTA QUE UNE ESTE NOVO VERTICE COM UM
VERTICE JA EXISTENTE.

44
o 501 =3 es02 =3 (ambos sdo vértices sobre o contorno da face)

Este caso se subdivide em mais casos. E necessario o auxflio da fungdo

ExistFace (utilizada na operacdo de corte de sdlidos). Conforme o

resultado de funcfio ExistFace, os vértices de intersec¢do podem estar:

a) em lacos diferentes: aplica-se o operador de Euler MEKR e o ponteiro
para a nova aresta (Figura 29) é enviado como parimetro de retorno

desta funcéo;

B 3 | o

FiG. 30. CASO COMO LACOS DIFERENTES.

b) j& existe aresta: retorna o ponteiro para a aresta existente;

¢) pertencem ao mesmo lago e existe material entres os vértices: aplica-

se o operador de Euler MEF, de modo que a nova face tenha a mesma
normal que a face antiga (Figura 30). Verificam-se os lagos internos
com o auxilio das fungdes VerifyLoops (da operacdo de corte de

solidos) e VerifyLoopsBoolean. Retorna o ponteiro da nova aresta;

F1 0) : Fl;gm
—to l—0

F1G. 31. NOVA FACE CRIADA, COM MESMA ORIENTACAO QUE A ANTIGA.

E importante destacar que se a nova face tiver a orientacdo invertida em
relagdo & face antiga, o algoritmo de classificagio de diedros nfo funcionara
corretamente pois serdo fornecidas normais com sentidos incorretos.

1) PointIntersection (TFace<T> *{,
TFace<T> *£2,
tnVector<T,4> n,
list< tnVector<T,4> > &PointList)

45
Pardmetros de Entrada;

f — ponteiro para a face que ser4 analisada;

{2 — ponteiro para a face do outro sélido;

n — equacdo da face 2;

PointList — lista com os pontos de intersecgao.

Esta funcfo ¢ semelhante 4 utilizada na operagdo de corte de sélidos.
Entretanto, é necessario ter certeza que o ponto de interseccdo existe na face f e na
face £2, antes de inserir este ponto na lista de pontos de intersecgio PointList.

Percorre-se as meia-arestas da face f e utilizando a func¢do intfe (da operacio
de corte de sélidos), determina-se se existe ou nio o ponto de interseccdo entre a
meia-aresta € o plano n. Se encontrado um ponto de interseccfo, verifica-se a
situagdio do ponto na face (utilizando a fungfo contfv) para a face f2. Se o ponto
estiver no interior da face ou numa das arestas ou vértices, entdio, este ponto &
inserido na lista PointList.

Neste algoritmo é possivel considerar a inclusdo de testes de verificagiio e de
imposicdo de topologia.

j) SortPoint(list< tnVector<T,4> > &PointList)
Pardmetros de entrada:
PointList ~ lista que guarda os pontos de interseccdo;

E realizada uma ordenacio dos pontos de modo semelhante a da operacéio de
corte de sélidos.

k) VerifyLoopsBoolean(TFace<T> *fl, TFace<T> *{2)
Pardmetros de Entrada:

fl — ponteiro para a face que foi cortada;

{2 — ponteiro para a nova face criada,

Esta funciio ¢ semelhante & funciio VerifyLoops (operagdo de corte de
s0lidos). Ela € um ajuste que deve ser adotado para situagdes que ndo ocorrem no
corte de s6lidos, mas podem ocorrer em operagdes booleanas. O exemplo na Figura
31 mostra uma face com um lago interno. Durante a etapa de criagdo de novos
vértices, arestas e faces, pode ser necessdrio criar um novo lago nesta face. Como a

funcdo VerifyLoops nfo prevé situacGes em que os lagos internos de uma face estio

46
um dentro do outro, e, portanto, no interior do lago externo da face f1, n3o ocorre a

mudanca do lagco para a face £2.

—— o3| =)
D Ij D 11 (3 lagos) - errado

f1 (2 lagos) f1 (3 lagos)
12 (1 lago) C> ED D

12 (1 lago) - errado 12 (2 lagos) - correto

11 (2 lagos) - correto

FIG. 32, CORREGAO PARA LAGOS INTERNOS NO INTERIOR DE LACOS INTERNOS,

E verificado se o primeiro vértice de cada lago interno de f1 esta no interior
de algum dos lagos de f1 utilizando-se a fungdio contlv. Se estiver, este lago deve ser
movido para a face 2.

I) SetFace(void}

Esta funcéo realiza a classificagéo das faces do primeiro e do segundo sélido.
Ela determina quais faces devem ser removidas.

A lista ListEdge contém as arestas de intersec¢fio, o que permite obter as
duas faces que formam a aresta. Estas sfo as faces a serem classificadas.

Utiliza-se uma classificagdio baseada no trabalho de Chiyokura (1988), em
que as informagSes do diedro formado pelas faces da aresta de interseccdo indicam
se a face do outro sélido deve ser removida ou nfo. Na Figura 32, tem-se os s6lidos
S1 e S2 e, ampliado, um ponto de intersecgio (na verdade, uma aresta de interseccdo
vista de perfil), com as faces que compdem o diedro: F11 e F12 do sélido S1;e F21 e
F22 do sélido S2.

47

| F12

s1
Fl)
(a) (b

F1a. 33 4) SOLIDO 81 E 82 B) DIEDROS DOS $OLIDOS 81 E S2;

—

Para cada aresta de intersec¢fio em um sélido existe outra correspondente no
outro s6lido. Analisa-se uma aresta por vez, que é confrontada com o diedro do outro
solido (Figura 33 a,b,c e d)

2 i)
w w
¥ 3 3
N . . !
. _{ .‘émm Fl g T
4 == R £ = = N
ke 2 g B R
Fl(a) (b) (¢) (d)

FIG. 34. A) CLASSIFICA F22 BASEADO NO DIEDRO F11/F12; B) CLASSIFICA F21 BASEADO NO DIEDRO
F11/F12; c) cLASSIFICA F11 BASEADO NO DIEDRO F21/F22; D) CLASSIFICA F12 BASEADO NO
DIEDRO F21/F22,

No primeiro estagio da classificacdio, & verificado se existem faces paralelas com
alguma outra face do diedro do outro s6lido. Estas faces podem possuir normais de
mesmo sentido (Figura 34b) ou opostas (Figura 34 a). Se forem opostas, significa
que estas faces irdo fazer parte do interior do s6lido resultante e portanto, devem ser
retitadas. Se possuirem normais com mesmo sentido, significa que definem a
superficie do sélido resultante e uma das faces deve permanecer. Por convencéo,
adotou-se que as faces do s6lido S1 permanecem e as do s6lido S2 sfo removidas

nestes casos.

48

Fl1

& é B
F27 £
Fl F2
(a) F1 (b
FIG. 35. o) F21 EF11 $A0 FACES COPLANARES COM NORMAIS OPOSTAS — AMBAS DEVEM SER

REMOVIDAS; B) F21 EF11 sAO FACES COPLANARES COM NORMAIS DE MESMO SENTIDO — UMA
DELAS DEVE SER REMOVIDA.

|

A fungdo Paralell faces classifica este tipo de faces.

Apbs classificar todas as faces paralelas com o outro diedro, classificam-se as
faces restantes. Se ao confrontar uma face com o diedro do outro sélido, ela estiver
contida no interior do diedro, significa que faz parte de uma éarea do s6lido que
devera ser removida. Naturalmente, se nfio estiver no interior do diedro, entdo esta
face faz parte da superficie do s6lido resultante.

Para determinar se uma face estd no interior de um diedro, sfo necessarias as
seguintes informagGes: um vetor perpendicular & aresta de intersec¢fio e coplanar &
face — denominado V e as normais das faces do diedro. No exemplo representado na

Figura 35, a face F22 esta sendo classificada com base no diedro F11/F9,

F2
V 4

vl

FIG. 36. CLASSIFICACAO DA FACE F22 USANDO O DIEDRO F11/F12.

Uma vez que os casos com faces paralelas j4 foram analisados, restam seis
possiveis posicdes relativas entre a face que estd sendo classificada e o diedro

correspondente no outro sélido, representadas na Figura 36.

49

VI —
& (IV)
V2 N2
(a) (b)
V2w
N
N14(I) (VD)
...... ViNE B
(IV) (v
N2
V2
(c) (d)
N1 I N2
\n<ﬁm§r—-gz——4ﬁm*vz

(r
(e)

F1G. 37. SITUACOES POSSIVELS DE CLASSIFICAGAO DE FACE BASEADO NO DIEDRO DO SOLIDO OPOSTO.

As regibes que definem o interior do diedro correspondem as marcacGes II, V e VI.
Utilizando o vetor V, N1, N2, V1 e V2, pode-se determinar as condi¢Ses para se

estar nestas regides (tabela I):

Tabela I — Condi¢es para faces estarem no interior do diedro

(1I) (V) (VI)
N1-V <0 N1-V20
1V<0
N2-V <0 N2-V20 N2-V <0
V2N120 V2:N120
VIN220 VIN220

Para as regifes que definem o exterior do diedro (tabela II):

50
Tabela II - Condicses para faces estarem no exterior de diedros.

(IT) [(V) (VI)
N1'V>0 N1.V<0

VIN2<Q VIN2<0

N2V <0 N2.V >0 J

I’ V2N1<0 V2N1 <0
|

A funcio Internal_Material utiliza estas mformaces para classificar as faces,

m) Paralell_faces(int &fnl,

int 2,

bool flag,

bool flagl,

bool flag2)
Pardmetros de Entrada:
fnl — identificador de face
fn2 — identificador de face
flag — indicador: flag = verdadeiro, entfo as normais das faces fol e fa2 sdo iguais e
ndo opostas
Parametros de Saida:
flagl — indicador: flagl = falso, entdo ndo & preciso verificar face fal nas préximas
etapas
flag2 - indicador: flag2 = falso, entdo n3o & preciso verificar face fa2 nas préximas
etapas

Estdo funcdo trabalha com os ¢asos em que as faces sdo paralelas. Deste

modo, ¢aso as normais das faces sejam iguais (Figura 37 a), entdo, a face do primeiro
sélido de ser mantida. Do conirario, as duas faces sio opostas (Figuras 37 bec) e
devem ser removidas (inseridas nas listas ListFacel ¢ ListFace2), pois delimitam
uma regifio sem material. As varidveis flagl e flag2 devem ser mudadas para falso,
pois estas faces j4 foram classificadas e ndo precisam ser analisadas pela fungio

Internal Material,

51

_Wml_wﬁl_mﬁﬂ
_mm_mm_mm

F1G. 38. A) NORMAIS IGUAIS B) E C) NORMAIS OPOSTAS DAS FACES FN1 E FN2.

n) Internal_Material(tnVector<T 4>V,
tnVector<T,4> nl,
tnVector<T,4> n2,
tnVector<T,4> v1,
tnVector<T,4> v2)

Pardmetros de Entrada:

V — vetor coplanar da face sendo classificada

nl —normal de face F1 (diedro)

n2 - normal de face F2 (diedro)

vl — vetor coplanar da face F1 (diedro)

v2 — vetor coplanar da face F2 (diedro)

Pardmetros de Saida:

Verdadeiro — a face deve ser removida.

Os casos restantes da classificagiio de faces que ndo envolvam faces paralelas,
sdo analisados nesta fungio.

S@o necessarios no maximo trés verificagdes: o valor de s1 = N1-V: o valor
des2 =N2-V e s3 =NI1-V2 ou s3 =N2-V1. Conforme o valor de s1, 52 e 53, pode-se
determinar em qual regido estd a face em questdo, utilizando-se as informaces das
tabelas I e II.

o) KillFaces(TSolid<T> *s,

set< int,less<int> > &ListFace,
set<int, less<int> > &ListEdge)

Parametros de Entrada:

§ — ponteiro para o sélido;

ListFace — lista que guarda os identificadores das faces que devem ser removidas:

ListEdge - lista que guarda os identificadores das arestas de intersecgdo que ndo

devem ser removidas;

52
O processo para remover faces foi dividido em duas etapas: a primeira

consiste em encontrar um ponteiro para a face que deve ser removida; a segunda
remove recursivamente as faces adjacentes a face que deve ser removida, desde que
nenhuma das arestas de interseccdo que estdo contidas em ListEdge sejam
removidas.
p) KillFace(TFace<T> *f,
set< int,less<int> > &ListFace,
set<int, less<int> > &ListEdge)

Pardmetros de Entrada:
f— face que deve ser removida;
ListFace - lista que guarda os identificadores das faces que devem ser removida;
ListEdge - lista que guarda os identificadores das arestas de intersec¢do que nfo
devem ser removida;

Esta fungio realiza recursivamente a remocdo de faces adjacentes 3 face £

Como primeiro passo, todas as faces adjacentes a f sdo verificadas. Se a aresta
compartilhada entre a face adjacente e a face f ndo estiver em ListEdge e, a face
adjacente nfo estiver em ListFace entdo, esta face pode ser removida (o identificador
da face adjacente ¢ inserido em ListFace). Chama-se recursivamente esta mesma
fungdo, enviando como parametro esta face adjacente.

Quando todas as faces adjacentes forem marcadas para serem removidas
passa-se para o segundo passo: remover a face. Este processo € feito de maneira
semelhante ao realizado na operagio de corte. Vale lembrar que as arestas

armazenadas em ListEdge devem ser mantidas.

53
Apéndice B - OpenGL

O que é:

OpenGL € uma biblioteca grifica de baixo nivel desenvolvida primariamente para as
linguagens C/C++ que disponibiliza ao programador uma pequena lista de primitivos
geométricos como pontos, linhas, poligonos e até imagens em bitmap. Além disso,
conta com comandos que permitem que o programador “arranje” esses primitivos em
duas ou trés dimensdes, juntamente com comandos que controlam como esses
objetos sdo renderizados no frame buffer, permitindo a formagio de figuras
complexas texturizadas.

Necessidade:

Antigamente, quando somente supercomputadores eram capazes de processar
tmagens tridimensionais, nfo havia linguagem universal para tal. Os programas eram
feitos especificamente para cada maquina € o miximo que se obtinha de
padronizagdo provinha da experiéncia acumulada de alguns programadores (isso
quando os programas n3o eram feitos “do zero”). Com isso, cada programa tinha sua
prépria ldgica de exibir e trabalhar suas imagens.

Com o desenvolvimento de microprocessadores mais capazes e conseqiiente
surgimento dos aceleradores graficos, a computagfio grafica tridimensional passou a
ser uma realidade também para os computadores pessoais. Isso gerou um enorme
aumento na “circulagfo” de imagens em 3-D. Estas passaram a ser vistas desde em
Jjogos de video-game até em complexos modeladores de acabamento em tempo real.

A partir dai, criou-se a necessidade de se desenvolver padrdes de linguagem
grafica que permitisse que programas fossem escritos independentemente do
hardware ou do sistema operacional em que fossem executados. O OpenGL foi um
dos primeiros padrdes criados, e & uma dos mais utilizados até hoje.

Vantagens:

A grande vantagem do OpenGL, dada a necessidade para a qual € solugdo, é
que ele pode ser traduzido para qualquer tipo de plataforma. Ele libera o
programador de ter que escrever c6digos para um equipamento especifico. Se o
comando dado for executével pelo dispositivo de hardware, ele o executa. Sendo a

biblioteca o executa no processador central.

54
Outra grande vantagem: a possibilidade de exibir os resultados (imagens) nfo

somente na maquina onde se executou o programa, mas também através de redes,
dada sua funcionalidade de ser executado independentemente do sistema
operacional, numa relacio servidor-cliente.

Funcdes:

Existem cerca de 150 comandos através dos quais o programador define seus
objetos e os renderiza. Esses comandos definem os objetos primitivos, suas
localizagbes no espago 3-D (e outros pardmetros como escala e rotagdo),
propriedades como cor, textura e material e até posicio da cimera.

Sédo algumas das principais funcionalidades:

* Primitivos Geométricos: A partir de primitivos geométricos, é possivel criar
qualquer tipo de objeto. A biblioteca oferece pontos, linhas e poligonos. E
capaz também de criar objetos utilizando bitmaps.

e Uso de splines: B-splines podem ser usadas para desenhar curvas entre
pontos.

* Transformagdes na disposi¢io dos objetos: permite transladar e rotacionar
0s objetos em qualquer lugar do espago 3-D, além de mudar suas formas a até
mesmo a posi¢do da camera.

¢ Trabalho com cores: permite que se trabathe com cores em modo RGB, ou
através de uma pallete grafica.

¢ Ocultagiio de linhas e remociio de faces: pode nio exibir linhas e faces
“escondidas” atras de outras.

* Buffer duplo: previne que as animag3es (como rotagfo) fiquem piscando.

» Texture Mapping (Mapeamento de Textura): para dar realismo aos objetos
renderizados em 3-D. Uma esfera, por exemplo, pode ser exibida como uma
“bola” texturizada, e ndo somente como uma esfera de uma cor so. Isso
também ajuda nos efeitos de iluminagio.

¢ Antialiasing: para suavizagio de retas que s vezes parecem “dentadas” nas
bordas.

e Tuminacdo: além dos efeitos com o mapeamento de textura, é possivel

definir fontes de luz, com posi¢io, intensidade € etc.

55
¢ Transparéncia nas texturas dos objetos.

¢ Exibicio de lista de objetos.
Bibliotecas auxiliares:

Apesar do OpenGL ser capaz de reproduzir praticamente qualquer tipo de
cena tridimensional, existem algumas funcionalidades que requerem a utilizagsio de
bibliotecas adicionais. O OpenGL sozinho, por exemplo, nfo é capaz de interagir
com mouse ou com teclado. Séo algumas bibliotecas auxiliares:

GLU: o uso desta biblioteca ja se tornou padréio e ela j4 vém incluida no
pacote béasico do OpenGL. Ela possui fungdes um pouco mais complexas feitas a
partir das fungles mais basicas do OpenGL. Por exemplo, pode-se construir um
cilindro com apenas um sé comando. Também inclui fungSes adicionais para o
trabalho com splines e incrementos para operacdes com matrizes e diferentes modos
de projecio.

GLUT: esta biblioteca auxiliar incrementa as funcionalidades para se
trabalhar com janelas, teclado e mouse e, assim como o OpenGL, independente da
plataforma. Isso € importante, pois assim como as fungdes graficas, o setup dessas
interfaces também ¢ especifico de cada sistema operacional e hardware. Logo, assim
como o OpenGL proporciona uma padronizagio das fungSes graficas, o GLUT
proporciona padronizagdo da interface com esses periféricos. Além disso, também
adiciona fungdes mais complexas a partir das fungSes basicas do OpenGL, como a
construcio de cones e tetraedro com um 6 comando.

GLUI esta biblioteca pode ser considerada uma auxiliar do GLUT (que por
sua vez auxilia o OpenGL). Ela fornece controles como botdes, checkboxes e

spinners (as esferas usadas para rotagdio da cAmera no USPDesigner).

56

Apéndice C - ALGORITMO DA VISUALIZACAO

A visualizagdo do USPDesigner ¢é realizada através das ferramentas

oferecidas pelo Open GL. As principais fungSes de auxilio do algoritmo sdo: draw()

e graphic().

Na funglo draw temos todo o programa necessdrio para se desenhar os

objetos.

#define draw

void
void

MSD_glVertex3f (const unit &x, const unit &y, const unit &z) {);
MSD_glNormal3f (const unit &x, const unit &y, const unit &z) {};

double value(const unit &x) {};

void

void

void

void

void

void

void

void

void

void

void

void

draw_point (TVertex<T> *x) {};
Auxiliares para desenhar os vértices.

draw (TVertex<T> *x) {};
Desenha os vértices dos s6lidos.

draw(TEdge<T> *x) {};
Desenha as arestas dos sélidos.

draw_stencil (TFace<T> *x) {};
Desenha as faces de acordo com a op¢do do usudrio, neste caso stencil.

draw_hidden (TFace<T> *x) {};
Desenha as faces de acordo com a op¢do do usuério, neste caso hidden.

CALLBACK vertexCallBack{ GLdouble *vertex) {}
Auxiliar para desenhar os vertices.

draw_tess_nonormal (TFace<T> *x) {};
Desenha as faces de acordo com a opgdo do usudrio, neste caso normal.

draw_outline test(TShell<T> *d) {};
Augxiliar para a linha de for a.

draw_outline2 (TShell<T> *d) {};
Opcao de linhas das arestas.

draw_wireframe2 (TShell<T»> *x) {};
Opgéo de linhas no wireframe.

draw_outline3 (TShell<T> *d) {};
Opcéo de linhas das arestas.

draw_outline (TShell<T> *d) {};
Desenha as linhas de fora e pode desenhar as faces dependendo da opgdo do

usuario.

57

void draw(TFace<T> *x) {};
Percorre os loops dos sélidos a serem desenhados. Manda percorrer os loops
de acordo com a opgo selecionada pelo usurio.

void draw(TShell<T> *x) {};
Percorre as faces e as arestas dos s6lidos a serem desenhados. Pode mandar
percorrer as arestas na opgdo wireframe ou as faces na opgdo néo-shading.

void draw_wireframe(TShell<T> *x) {};
Percorre e desenha as arestas dos s6lidos na opgdio wireframe.

void draw_shading (TShell<T> *x) {};
Percorre as faces dos s6lidos a serem desenhados na opcdo shading.

void draw(TRegion<T> *x} {};
Percorre as shells dos sélidos a serem desenhados.

void draw(TSolid<T> *x) {};
Percorre todas as regifes dos sélidos a serem desenhados.

void draw() {};

Percorre toda a lista de s6lidos que serd desenhada.

Na funcfo graphic temos as opgSes de visualizagdo par o usudric € a
interface com a fungdio draw. Nesta fungdo temos as funcbes doSolid, delSolid e
loadSolid.

Para a visualiza¢do temos na funcio doSolid:

void doSolid(void) {
draw<doublex () ;

if (LIGHT);

if (WIREFRAME);

if (AXIS) glCallList (AXIS LIST);

if (PLANE_XY) glCallList(PLANE XY LIST);
if (PLANE_YZ) glCallList(PLANE YZ LIST);
if (PLANE_XZ) glCalllList (PLANE_XZ LIST);

Esta fungéo aciona a fungdo draw e fornece as referéncias requeridas para a
visualizacdo de acordo com a opgéo do usuario.

Temos as fungdes auxiliares de visualizacio como a graphic_interface que
define as propriedades da tela de visualizagdo do usuério e as opedes permitidas

A func¢fio grid que define as linhas de referéncia que o usudrio dispSe para
visualizagio.

Temos o header Alh que realiza a interface entre a visualizacio do

programa, com o tipo de visualizag8o dos objetos escolhida pelo usudrio com todas

58
as operagdes e teclas de funcSes disponiveis. Além das opgdes de gréfico definidas

na outras fung8es, temos acréscimo de outras funcionalidades como: escala, rotagfo,
interface com mouse, linha de comandos, etc.

#define al h

void init{void)

{
glShadeModel {GL_SMOOTH) ;
glClearCeolor(1.0, 1.0, 1.0, 0.0); // sets background
glEnable (GL_LIGHTING) ;
glEnable (GL_NORMALIZE); // recalculates normals after scaling
}

void Redisplay (veid) {}
void idle(void) {}
void write message() {}
void write_select (int %, int y) {}
void write subtitle(float x, float y, char *message) {}
void light_display(void)
void draw_selection box{void) {}
void digplay{void)
void display select(void) {}
void Scale (int x, int y) {}
void motion{int x, int vy)
void rotation{int x, int y)
void mouse (int button, int state, int x, int y){}
vold keys(unsigned char key, int x, int y){
case 's':
case 'S':
sprintf(msg, "solid [%¥d] is selected ",
Target_Solidl{});
MSDprint (msg) ;

break;

case 'f':
case 'F':

int command maker (char *command, float id[10]) {
if {(!strcmp({command,"line")) {
if {1stremp (command, "box")) {
if (!strcmp(command, "torus")) {

}

int command_reader (char *st) {}

void button_control(int button_id) {}

void checkbox control (int id) {
switch(id) {
case LIGHTING ID:
case ANTIALIAS ID:
case SMOOTH_SHADING ID:

void command list control (int id) {
void subwin top (GLUI *glui_ subwin) {
void subwin bottom(GLUI *glui_subwin) {

void subwin left (GLUI *glui_subwin) {
glui_subwin->add_statictext ("testel");

void About display(void) {

void VGA display{void) {
void Generic_keys(unsigned char key, int x, int y) {
void AboutWindow(int x, int y, char *name, void function(void)) ({

void ExtraWindow({void function(GLUI* subwin)) {

void subwin_right (GLUI *glui_subwin) {
command_list_control);

switch {(command list viewer) {

case 1: // primitives

case 2: // modify solid

case 3: // modify face

case 8: // File

case cylinder id:

case sphere_id:

case torus_id:

case boolean id:

void special (int key,int x, int y){
case GLUT _KEY Fl:
sprintf (msg, "Full Window - Plane XY Mode", NULL);
case GLUT_KEY F2:
case GLUT KEY F5:

59

#endif

sprintf (msg, "Full Window - ALl Views", NULL);

60

61
BIBLIOGRAFIA

AMMERAAL, L.,STL for C++ programmers, Wiley, 1996.
BERRY, J. T., C+ Programming, segunda edicdo, Prentice Hall, 1995.

BORLAND INTERNATIONAL, Borland C++ Library Reference, versio 4.0,
Borland International, 1993.

HOFFMANN, C.M., Geometric and Solid Modeling: An Introduction, Morgan &
Kauffmann., 1989.

MANTILA, M., An Introduction to Solid Medeling, Computer Science Press.,
1998.

PAPPAS, C. H. & Murray, W. H., Turbo C++ Completo e Total, McGraw Hill,
S&o Panlo, 1991.

PORTER, A., C++ Programming for Windows, McGraw Hill, 1993.

TSUZUKI, M. S. G., Apostila de PMC490 — Projeto Auxiliado por Computador,
EPUSP, 2002.

SHIMADA, M., Aritmética Intervalar em um Modelador de Sélidos B-Rep,
Dissertacdo de Mestrado, EPUSP, 2002.

